
G A M E D E V E L O P E R S E P T E M B E R 1 9 9 7 h t t p : / / w w w . g d m a g . c o m

12

A D D I N G
L A N G U A G E S
TO G A M E E N G I N E S

K, I’ll admit it. I'm a lazy programmer. Whenever I can

get away with it, I love to get other people to do my

job for me. And as a programmer focusing on game-

play and simulation, life keeps getting more and more

complex. Just as the things we used to toil away at for

hours – sound mixing, 3D rendering, interrupt pro-

cessing – are getting easier and easier, simulation pro-

gramming is getting harder and harder. Now that we

have DirectSound and DirectDraw, when can we

expect DirectGameplay?

I can remember a time not long ago when bits were

the solution for everything. Back then, when a designer

B Y R O B E R T H U E B N E R

S C R I P T SG A M E

OO

wanted some cool new feature, the
solution was to write some code, find
the next free bit in the CCoooollEEffffeeccttssFFllaaggss
bit vector, and recompile. Once the
designer enabled the bit, the new fea-
ture emerged, ready for action. But
lately, I’ve run out of bits.

The problem is, users are demanding
more interactivity and unpredictability
from their games. They aren’t satisfied
with 10 types of weapons when your
competitor has 20. Moving platforms
aren’t sufficient if some other game has
rotating platforms. So what’s a lazy
programmer to do?

Scripting languages have been an
integral part of games for many years.
Long before action games ran out of
bits, adventure game authors recog-
nized the need for scripting to cope
with the massive number of possible
interactions in their worlds. SCUMM
(Story Creation Utility for Maniac
Mansion), one of the original adven-
ture game languages, has survived vir-
tually intact until the present day, and
is still used for games such as MONKEY

ISLAND 3. As other game genres such as
action, simulation, and strategy
become more complex, they too are
incorporating scripting systems.

The best way to stay competitive in
the race for bigger and better games
and game engines is to keep the engine
as flexible, expandable, and robust as
possible. An internal scripting language
allows you to create a separate, crash-
proof environment inside your game
engine. This protected virtual machine
executes the complex and frequently
changing gameplay code, protected
from the “real” machine running the
game engine. By partitioning the code
in this way, you significantly reduce
the complexity of the core engine,
resulting in fewer bugs and a more
robust game. And since a language sys-
tem is far more flexible than a collec-
tion of “canned” effects, your engine
will be able to do more interesting
things, even things you didn’t original-
ly anticipate.

Using a script language allows the
engine programmers to focus on what
is important to them — refining and
optimizing the core technology of the
game — while the game designers can
handle the gameplay details. If the lan-
guage is simple and well-designed,
nonprogrammers can implement their
designs directly in the script language

without endangering the core engine
code or involving the engine program-
mers. And since programmer time on a
project is usually limited, recruiting
designers as scriptwriters allows more
of the original design to be realized,
resulting in a more interesting final
game. In fact, most designers jump at
the opportunity to directly implement
their ideas in script, even when it
requires learning a new language.

The Snowball Effect

O ver three years ago, the original
team developing DARK FORCES (the

sequel, with which this article is con-
cerned, is shown in Figure 1) took the
unconventional step of implementing
some of the important game systems
using a special parsed opcode language
called INF. INF (which, as far as anyone
on the original team can recall, doesn’t
stand for anything) was used for simple
tasks such as moving sectors and eleva-
tors around, tracking the mission goals,
and generating new enemies. INF didn't
require any complex parsing because
the format was simple and direct — the
script equivalent of assembly language.
One of the design goals in creating the
sequel was to expand and enhance the
INF language, making it more powerful
and user-friendly.

One of the main complaints from
level designers on the original project
was that INF required the use of a lot of
specific flags and opcodes to enable var-
ious features. A common fixture near
the designer’s workstation was a stack
of pages affectionately known as the
“Zen and the art of INF.” The first draft
of a replacement INF retained its basic
structure, but translated the numerical
codes and flags into text so this “bible”
would no longer be necessary.

One day, someone suggested that if
the language was expanded slightly, it
could take on the added responsibility
of scripting the results of powerups,
which were handled in-engine in the
original game. Shortly after making
these extensions, someone else suggest-
ed that it would be nice to add some
simple math and conditional opcodes
to the language, and these were also
added. And so it went, for a period of
weeks, as more and more systems were
absorbed into the rapidly expanding
snowball that was INF 2. It became

clear that there was a need for a more
flexible, all-purpose scripting language,
and the snowball transformed into
COG (which, true to the spirit of INF,
also stands for nothing).

The Paths Not Taken

T here were two primary goals for
our language. First, the syntax

should be powerful enough to offer
complex loops, conditionals, and nest-
ing, but familiar enough to be learned
and used by a nonprogrammer.
Second, the language must execute
quickly enough to be useful in a real-
time action game.

The first stop on any language shop-
ping trip should be the catalog of free
compilers at http://www.idiom.com/
free-compilers/. Here, you can find
dozens, if not hundreds, of existing
scripting libraries that can be linked
with your application. Each of these has
various advantages and disadvantages.
Some are very simple, such as LISP or
FORTH, while others are quite complex,
such as JAVA, Tcl, or LUA. Most of these
languages are also completely free, the
products of university or government
research projects. The main disadvan-
tage of using a ready-made language is
performance. Many of the languages are
at least partially interpreted, and many
do not provide source code for the
speed-critical execution kernel. If devel-
opment time is the primary concern, or
if your application is less dependent on
fast execution, there are several excel-
lent possibilities here.

Since execution speed was a primary
concern, the possibility of expanding
the game engine via dynamic link
libraries (DLLs) instead of a script lan-
guage was considered. The advantage in
execution speed was clear, but using
DLLs would have made it difficult for

h t t p : / / w w w . g d m a g . c o m S E P T E M B E R 1 9 9 7 G A M E D E V E L O P E R

13

F I G U R E 1 . JEDI KNIGHT: DARK FORCES 2

the game designers to use the language
directly. Even though we felt comfort-
able introducing them to a limited C
syntax and structure, we didn’t want to
take the further step of introducing
them to the complexities of compilers,
build environments, linking, and so on.

The final option, and the one that we
eventually implemented, was to create
a custom language execution kernel
and parser. The speed issue was
addressed by performing the important,
time-critical operations in native code
and exporting these support functions
to the language system as COG library
functions. These library functions could
be augmented via DLLs, which gave the
advantage of native-code speed with
the ease-of-use of a custom language.

COG

T he rest of this article focuses on the
language problems and solutions

that we used in creating the 3D action-
adventure game JEDI KNIGHT: DARK

FORCES 2 for the PC.
For the JEDI KNIGHT language, chris-

tened COG by the designers, we chose
to implement a custom, compiled lan-
guage that closely resembled the syntax
of C. Using the C syntax as a starting
point, we removed most of the obscure
keywords and constructs and even
removed some fairly major portions of
the language dealing with function dec-
larations and switch statements because
they were significantly more complex
to parse and execute than the rest of
the language. We chose the C language
as a starting point because of its famil-
iarity and the wealth of books and tuto-
rials available teach the language to
nonprogrammers.

Just as in C, the syntax of the
COG language is less important
than library of functions at its
disposal. The COG library pro-
vides about a hundred different
functions to the author, rang-
ing from environment manipu-
lation commands to informa-
tion queries. The author uses
these functions to control the
game environment while using
the language syntax to provide
branching and looping control.

The game engine executes the
scripts in an event-driven man-
ner. For example, when two

objects collide with each other in the
physics engine, any COG scripts linked
to either object receive a “touched”
event. This event contains parameters
that allow the script to identify which
objects were involved in the event and
the type of event that occurred. Based on
this information, the script can manipu-
late the game state in whatever manner it
wishes, or can simply ignore the event.
COG scripts can also contain links to
each other, which enable them to
exchange messages. These events make
up the primary interface between the
engine and the language system.

There are additional messages that are
delivered directly to the COG script
rather than through the objects to
which a COG script is linked. A ssttaarrttuupp
message is sent to each COG script at the
start of a level, and a rreessppaawwnn message is
sent each time the local player dies. Each
game object also has the ability to set a
repeating ppuullssee event or a one-time ttiimmeerr
event to be delivered at some point in
the future. This allows a combination of
event-driven and scheduled execution.

Because we removed the standard C
syntax for function declarations from
our language for simplicity, each script
is organized much like a large switch
statement. The entry points into the
code for various types of events are
labeled using the standard C label syn-
tax. Also, because COG expanded on
the standard C variable types with the
addition of game-specific resource vari-
ables (sector, thing, sound, and so on),
the script variables are declared in a
special header. The level editor (LEIA,
shown in Figure 2) also reads this head-
er so it can display the symbols to the
designers and allow them to view edit
the symbol values.

Execution Model

E ach script that exists in a level is
linked to any number of other

objects in that level: walls, enemies,
doors, other COG scripts, and so on.
COG scripts execute as separate virtual
machines, each with its own variables,
stack, and execution pointer. Because
of this, COG scripts are protected from
each other. One badly written COG
script can only affect itself and the
objects to which it is linked. Each
script is a separate resource that is
loaded along with a game level. A sin-
gle script can be placed in a level multi-
ple times, with each placement having
its own isolated environment.

A sample COG script is shown in
Listing 1. This script creates an animat-
ing neon sign which, if it is damaged,
will explode in a shower of sparks.
Symbols not marked local can be modi-
fied directly in level editor tool. The

G A M E D E V E L O P E R S E P T E M B E R 1 9 9 7 h t t p : / / w w w . g d m a g . c o m

14

G A M E S C R I P T S

F I G U R E 2 . JEDI KNIGHT’s level editor LEIA.

Message Description

TToouucchheedd An object or surface was touched by another object. References to

both collision participants can be retrieved.

EEnntteerreedd For sectors, called each time a new object enters the sector

DDaammaaggeedd Called whenever the object would take damage from weapons or

explosions. References to the cause of the damage and the type of

damage are provided to the handler.

CCrreeaatteedd Called on a new object when it if first created

KKiilllleedd Called when the object is about to be removed from the game

CCrroosssseedd Called for an adjoin plane whenever an object crosses it

AArrrriivveedd Called when a moving object reaches its destination

TTiimmeerr A timer event set by the script has expired

SSiigghhtteedd An object is seen by the player for the first time

TA B L E 1 . Sample COG event messages.

ddeesscc== field tells the editor what descrip-
tive string to display when the designer
is editing that variable.

Access Control

O ne important decision made with
COG was to disallow direct access

to internal engine variables and struc-
tures from the scripts. If a COG script
wishes to examine or modify these
internal variables, it can do so only via
library function calls. This is an impor-
tant step in making the language crash-
resistant. If a COG script could directly
manipulate variables in the engine,
there would be nothing to prevent
badly written or out-of-date scripts
from wreaking havoc with other sys-
tems. By requiring the use of access
functions, any amount of validity
checking and network synchronization
can be added without affecting the
scripts themselves. This requires a little
extra work for the language program-
mer, since more functions will have to
be written, but it pays off in terms of

code stability down the road.
The COG library functions are actual-

ly just C function pointers that are visi-
ble to the COG scripts as global sym-
bols. When the execution kernel
encounters a call to one of these func-
tions, it jumps to the native C code. The
C code then calls language support
functions to retrieve its arguments from
the stack and return the results of the
call back to the language. Since the

functions are in native code, they exe-
cute significantly faster than the script
language itself. For this reason, fre-
quently performed tasks are written in C
and called as library functions. Table 2
gives examples of the types of functions
contained in the COG function library.

Compilation

For the script code to be executed as
efficiently as possible, it must be

translated from the text source code to
some internal representation that can
be executed quickly. This process is
called compilation, and the compilation
of our language source is just a simpli-
fied version of what a normal compiler
does to translate source code into native
machine code. Instead of producing
Intel or PowerPC opcodes, we produce
our own virtual machine opcodes.

The language’s virtual machine is a
type of simulated CPU. For COG, we
use a very simple model called a “stack
machine.” The stack machine gets its
name from the fact that it performs all
operations on a single stack. Anyone
who has used an HP calculator will be
familiar with the system. To add 5 and
10 on a stack machine, we would exe-
cute the opcodes

PPuusshh 55

PPuusshh 1100

AAdddd

The stack machine contains very few
opcodes, making it simple to implement
and efficient when executing. Our goal
is to quickly compile the source code
written by the designer into our custom
stack machine opcodes. Any valid
sequence of commands in the COG lan-
guage can be broken down into these

G A M E D E V E L O P E R S E P T E M B E R 1 9 9 7 h t t p : / / w w w . g d m a g . c o m

16

G A M E S C R I P T S

0000__nneeoonnssiiggnn..ccoogg
##
tthhiiss ccoogg wwiillll ccyyccllee tthhrroouugghh ffrraammeess 00--((llaassttFFrraammee--11)),, aatt ffrraammeerraattee ffppss
iiff ddaammaaggeedd,, iitt wwiillll ggoo ttoo ffrraammee llaassttFFrraammee aanndd ssttoopp,, ccrreeaattee ssppaarrkkss aanndd ssoouunndd

ssyymmbboollss
mmeessssaaggee ssttaarrttuupp
mmeessssaaggee ddaammaaggeedd

ssuurrffaaccee ssiiggnn mmaasskk==00xx444488
ffllooaatt ffppss==22..00 ddeesscc==ssppeeeedd ooff aanniimm
tteemmppllaattee ssppaarrkkss==++ssppaarrkkss ddeesscc==ccrreeaatteedd wwhheenn sshhoott
ssoouunndd eexxpp__ssoouunndd ddeesscc==ppllaayyeedd wwhheenn sshhoott

eenndd

ccooddee
ssttaarrttuupp::

//// SSttaarrtt tthhee aanniimmaattiioonn llooooppiinngg bbuutt sskkiippppiinngg tthhee ffiirrsstt 22 ffrraammeess
SSuurrffaacceeAAnniimm((ssiiggnn,, ffppss,, 00xx55));;
rreettuurrnn;;

ddaammaaggeedd::
iiff ((GGeettWWaallllCCeell((ssiiggnn)) ==== 00))

rreettuurrnn;;

SSttooppSSuurrffaacceeAAnniimm((ssiiggnn));;

iiff ((eexxpp__ssoouunndd))
PPllaayySSoouunnddPPooss((eexxpp__ssoouunndd,, SSuurrffaacceeCCeenntteerr((ssiiggnn)),, 11..00,, --11,, --11,, 00));;

SSeettWWaallllCCeell((ssiiggnn,, 00));;
CCrreeaatteeTThhiinngg((ssppaarrkkss,, GGeettSSoouurrcceeRReeff(())));;
rreettuurrnn;;

eenndd

L I S T I N G 1 . Sample COG script.

Function Description

SSttaarrttAAnniimm Starts a page-flipping animation on a surface, sprite, or material

SSeeccttoorrTThhrruusstt Sets a thrust force for a sector

SSeettTThhiinnggFFllaaggss Sets bits in the thing’s flag field

GGeettCCuurrSSeeccttoorr Retrieves a reference to the sector a thing is currently contained in

CCrreeaatteeTThhiinngg Creates a new thing in the world

PPllaayySSoouunnddTThhiinngg Plays a sound spatially linked to the position of a thing

SSeettTTiimmeerr Sets a timer event for some future time

PPllaayySSoonngg Plays a redbook music track

AAIISSeettTTaarrggeett Sets the target an AI object is attacking

AAIISSeettMMooddee Sets the mode of an AI object

MMoovveeTTooFFrraammee Moves an object along a path to a specified position, used for mov-

ing doors, elevators, and so on

TA B L E 2 . Sample COG library functions.

basic operations, just as normal C code
can be translated into the basic opcodes
of your target CPU.

The COG compilation process hap-
pens in two steps. First, the code is bro-
ken down into its relevant language
parts or tokens. COG tokens, just like C
tokens, include all the language key-
words (iiff, tthheenn, eellssee) and operators (++, *,
&&). This stage of compilation is called
lexical analysis or “lexing.”

The second part of the compilation
process involves taking the tokens from
the “lexer” and assembling them into the
syntax of the language. This is a more
complicated process and is based on a
formal specification of the language. The
formal language specification defines in
detail every possible expression that can
be constructed with the language in a
recursive format. It seems a little awk-
ward at first, but becomes clear after
some study. For example, the formal def-
inition of an addition operation is

((aaddddiittiioonnEExxpprreessssiioonn)) :: ((eexxpprreessssiioonn)) ++

((eexxpprreessssiioonn)).
This defines an addition expression as

two separate expressions separated by the
“+” token. Since the addition expression
is just one of the many possible defini-
tions of the more general “expression,”
you can see how the processing the lan-
guage quickly becomes a recursive prob-
lem. The lowest level of the specification
— the “atoms” of the language, so to
speak — are the constants and variables.

Since parsing the language is a recur-
sive problem, we build a tree to repre-
sent the structure of the source code as
it is being parsed. As each language
construct is recognized, we add it to
the tree. The type of expression we rec-
ognize determines the structure of that
small part of the parse tree. When the
tree for the entire function or source
file is completed, we can simply tra-
verse the tree in depth-first order and
create the stack machine opcodes that
we will later execute.

Returning to the simple addition
example, our completed parser should
construct the parse tree in Figure 3 for
the source code aa==55++1100;;

Because the language parsing is done
recursively, the parse automatically
handles normally tricky problems such
as nesting and order of operations
automatically. When the code aa==((55*22)) ++
((aa^̂22)) is parsed, the parser will recognize
the subexpressions 55*22 and aa^̂22 first, and
will pass the completed parse trees for
these subexpressions to the code that
creates the tree for the addition expres-
sion, resulting in a single tree for the
entire expression.

The most complex expressions to
parse are those involving loops and
branches. These expressions require the
generation of code using the branching
opcodes, which means the parser must
know the address to which it needs to
jump. For example, to generate code
for iiff <<ccoonnddiittiioonn>> tthheenn <<eexxpprreessssiioonn>>, the
parser must know the address of the
code address immediately following
the eexxpprreessssiioonn subtree in order to gener-
ate a GGOOFFAALLSSEE opcode to jump to this
code if the conditional fails.

The trick to generating code for these
branches is to generate code in two
passes rather than one. The first pass,
known as “backpatching,” doesn’t gen-
erate code, but simply counts the num-
ber of opcodes produced by each node
of the parse tree. During this first pass,
as each node is encountered while tra-
versing the tree, the code address
(index into the array of opcodes) is
noted both before the opcodes from
the node are added and after. After this
first pass, each node now contains the
code address just prior to and just fol-
lowing its own subtree’s code. Now, on

the second pass, the branches that were
previously expressed in terms of eenndd ooff
nnooddee <<eexxpprreessssiioonn>> can be expressed as
actual code addresses.

This is obviously a complex topic
that we have examined only superfi-
cially. For more information on the
theory behind parsing and the use of
parse trees, the standard text is
Compilers: Principles, Techniques, and
Tools by Aho, Sethi, and Ullman.

The Silver Lining

F ortunately, it’s not nearly as diffi-
cult as it sounds. Writing compil-

ers is an old and well-established sci-
ence. There are numerous of tools to
simplify the creation of an efficient
parser. In fact, this is one of those rare
computer science problems that can
safely be called “solved.” The parsers
generated by the compiler tools are
consistently more efficient than what a
human programmer could create
because they deal with the parsing
problem as a complex state machine.
Even a simple language specification
results in a state machine with so many
possible states and transitions that a
mere mortal programmer would be dri-
ven (or bored) to tears.

One free tool called “lex” is com-
monly used to generate C code imple-
menting a lexical analyzer based on a
user-supplied grammar specification.
Since COG follows the C syntax, we
modified an existing free C lex specifi-
cation file from the Internet to create
the lexer for the language.This ANSI-C
lex specification can be found at
http://www.cis.ufl.edu/~fryman/
c.lex.spec.html.

G A M E D E V E L O P E R S E P T E M B E R 1 9 9 7 h t t p : / / w w w . g d m a g . c o m

18

G A M E S C R I P T S

Opcode Explanation

PPuusshh Pushes a constant of symbol onto the execution stack

PPoopp Pops the next value off the execution stack

GGooFFaallssee Pops the top stack value and jumps to a new execution address if it

is equal to 0

GGoo Jumps to a new execution address

SSttoopp Stops execution

CCaallllFFuunncc Pops the next value from the stack as a C function pointer and calls

that function

AAdddd Pops the next two values from the stack, adds them, and pushes the

result onto the stack

AAssssiiggnn Pops the next two values off the stack, and assigns the value of the

second value to the variable contained in the first

TA B L E 3 . Sample COG “stack machine opcodes.

a

5 10

ADD

ASSIGN

F I G U R E 3 . Simple parse tree.

Similarly, another free tool called
yacc (for Yet Another Compiler
Compiler) can be used to transform a
formal language specification into a C
module. yacc and lex are designed to
work together, so the resulting source
code modules can simply be compiled
and linked to create a fully functional
parser. For COG, the same Internet site
yielded a full C grammar specification
for yacc, which was trimmed down to
our needs and used to create the parser
module. The URL for the ANSI-C yacc
framework is http://www.cis.ufl.edu
/~fryman/c.yacc.spec.html.

The resulting compiler has all the
tools needed to break down the source
code and recognize the language syn-
tax, but it is still your responsibility to
write the “hooks” that tell the compiler
what actions to perform when the lan-
guage is recognized. These hooks are
what enable us to build our parse tree.
By inserting this parse-tree building
code, along with some code to manage
the allocation and definition of the
language variables, we were able to cre-
ate a C-subset compiler in about a day.

Both lex and yacc are available in
many forms and permutations; some
free, some not. And while lex and yacc
are the most common compiler tools,
there are several others including full-
featured language construction environ-
ments such as VisualParse++ by
Sandstone Technologies. Whichever tool
you use, the end product is the same — a
stream of opcodes that can be executed
quickly and efficiently by your virtual
machine. Check out the free compiler
catalog mentioned earlier for links to
these and other useful language tools.

For more specific information on the
lex and yacc tools, check out Lex &
Yacc by Levine, Mason, and Brown in
the O’Reilly & Associates UNIX
Programming Series.

Putting It All Together

The finished parser, developed using
the free tools mentioned above, is

incredibly fast and flexible. In a typical
JEDI KNIGHT level, there are about 50 dif-
ferent script files that need to be parsed
and compiled into our opcode format.
On a typical machine, all these scripts
compile in well under one second. For
this reason, we decided against using an
external compiler and instead load the

source directly when loading the level.
This improves the turnaround time for
testing script changes, since the design-
er can quickly edit the script code and
reload the level to test changes.

One aspect of the scripting system
that proved critical for our project was
the integration of the scripts and the
level editor. The level editor not only
allows the designer to place scripts into a
level, but also ensures that the various
links in the script are correctly assigned
and remain correctly linked as the level
changes. When a designer places a script
resource into a level, the editor scans the
header of the script to determine what
variables can be assigned externally and
places a graphic representation of the
script resource in the level. This icon has
a spatial location in the level, although
its location isn’t important to the script.
Typically, designers place scripts near
the objects to which they link. Once the
script is placed, the designer can bring
up the property dialog for that script and
view and change its assignments. If the
script contains links to other things or
surfaces, these are assigned by clicking
on the correct type of item in the level
and clicking a link button. Links
between COG scripts and world entities
are shown graphically in the editor by
connecting them with lines. If the script
contains resources such as sounds or
bitmaps, a pull-down menu displays the
possible choices.

Another area that should be addressed
is debugging. There are two main issues
here — debugging syntax parsing prob-
lems, which normally is solved by
adding better error-reporting and recov-
ery code into the parser, and run-time
debugging, which can take many forms.
One possible method of run-time debug-
ging of scripts is to allow the user to
trace execution. In JEDI KNIGHT, the
designer can enter a console command
to turn tracing on for a specific COG
script, which will cause that script to
output debugging information each
time it executes. A more complete sys-
tem would allow for single stepping
through script opcodes. The real chal-
lenge, which has not yet been addressed
in COG, is to allow for “source-level”
debugging, where users can watch their
variables change and see the script step
through the original code. This feature
may seem like a lot of unnecessary work,
but it was the top request made by our
designers at the end of the project.

“How’d You Do That?”

Implementing and maintaining the
language was a significant task, and

it took the work of several program-
mers to keep up with the designer
demand for new COG library func-
tions. But when compared to the time
that would have been spent writing
specific systems for things such as mis-
sion objectives, inventory manage-
ment, powerup sequencing, puzzles,
doors, elevators, and so on, using a lan-
guage was a definite win.

After a period of uncertainty, most of
the designers started becoming comfort-
able with the language and began to
experiment with it. Strangely enough,
the key here was trust. Once the design-
ers were convinced that the language
was safe enough that they wouldn’t
crash the entire game by writing a bad
script, they began to try more interesting
things with the language. After some
time, they effectively took over the
majority of the gameplay programming
for JEDI, as planned. Some of the design-
ers were so enthusiastic about the use of
scripting that they later took evening
classes in C and C++ programming, and
at least one designer is moving into pro-
gramming full-time. Even those design-
ers who preferred not to work closely
with the language found it easy to place
and link existing scripts written by other
designers into their own levels.

Perhaps the most important effect
the language had on JEDI is illustrated
by an example. One day, a large group
was gathered around the desk of one of
the level designers on the project. It
seems he had created a puzzle script
where the user hits a switch on the wall
causing the water level in the room to
rise slowly, carrying the player along to
the top of the room. It seems simple,
except we had just recently decided not
to support moving water levels in the
game. No one, including those who
had worked on the engine and the lan-
guage, could figure out how he did it.

I still don’t know. I’m too lazy to
find out. ■

Robert Huebner is a senior programmer
at LucasArts Entertainment specializing in
network and simulation programming.
Prior to JEDI KNIGHT, he worked on
DESCENT and other online titles for
Interplay Productions. After JEDI KNIGHT,
he will sleep for a month. He can be
reached at virtual@lucasarts.com.

G A M E D E V E L O P E R S E P T E M B E R 1 9 9 7 h t t p : / / w w w . g d m a g . c o m

20

G A M E S C R I P T S

	back:

